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Technology

Probabilistic causal models (PCMs) 
represent non-deterministic cause-

and-effect relationships between sto-
chastic entities. These models are crucial 
for causal reasoning, which ultimately 
drives informed decision-making, allow-
ing us to achieve situational understand-
ing about complex processes and po-
tential threats that are central to LLNL’s 
mission. Good examples are how one 
might account for the uncertainties and 
variability in the preparations for NIF 
ignition experiments or decide which 
countermeasure is the most effective 
against an epidemic. Through PCMs, 
we can infer these types of mission-
critical intelligence. PCMs offer a more 
informative model than semantic graphs 
(our current technology), which merely 
provide associative information between 
entities and lack the infrastructure neces-
sary for effi cient reasoning under uncer-
tainty. Automatic learning of PCMs can 
reveal hidden patterns and entities, thus 
providing template models (e.g., Bayes-
ian networks (BNs)) for processes lack-
ing well-defi ned physics and/or expert 
domain knowledge.

Project Goals
This effort focused on the automated 

learning of BNs as a means for uncover-
ing causal information from observed 
data. The goal was to implement a 
toolbox of state-of-the-art algorithms 
for learning BNs, which encapsulate in-
dependence assumptions and stochastic 
dynamics among process variables. 

Relevance to LLNL Mission
This work is highly relevant to 

furthering LLNL’s missions related to 
Inference and Adversarial Modeling. 
The toolbox can 1) enhance pattern 
discovery, risk analysis, and predictive 
reasoning in any application related to 
modeling and decision-making under 
uncertainty, where the dynamics of 
agents are poorly understood, as in igni-
tion experiments for NIF and disease 
propagation for the Biodefense Knowl-
edge Center (BKC); 2) reduce time/labor 
and mitigate inconsistencies, uncertain-
ties, and oversights associated with 
building models manually; and 3) be the 
launching pad for enhanced reasoning 
tools that integrate Bayesian modeling 
with general classes of computational 
expertise (e.g., game-theoretic or agent-
based) to improve optimal decision-
making. Our results could be extended 
to decision-theoretic tools for a variety 
of applications including 1) predicting 
disease spread and assessing risk of 
nonintervention in an epidemic scenario; 
and 2) improving process modeling and 
experiments under uncertainty.

FY2008 Accomplishments 
and Results

A BN is a directed acyclic graph 
(DAG) that encodes a joint probabil-
ity distribution over a set of random 
variables, in a factored manner that 
makes explicit use of the conditional 
independencies between variables. Given 
data from an unknown process, the goal 

is to perform BN learning on the data 
to estimate a model of the underlying 
process. Focusing on BN technology, 
our accomplishments include 1) a survey 
report of advanced machine learning 
methods; 2) implementations of learning 
methods; and 3) demonstrations on avail-
able programmatic data. 

BN learning involves uncovering the 
graphical structure, as well as the param-
eters that quantify probabilistic infl uenc-
es between variables. Structural learning 
is generally hard, because the number of 
possible structures (i.e., DAGs) grows 
super-exponentially in the number of 
attributes. Evaluating all structures is 
intractable by traditional means.

Our toolbox implements two 
state-of-the-art algorithms. Both as-
sume pre-specifi cation of the number of 
variables and the cardinality of possible 
states. The fi rst computes probabilities 
for all potential edges simultaneously, 
faster than any previous Markov Chain 
Monte Carlo (MCMC)-based samplers, 
and is applicable for edge discovery in 
networks. The second speeds up MCMC 
sampling of DAG structures, by apply-
ing dynamic programming for updating 
the proposal distribution to judiciously 

Figure 1. Map of simulated outbreak 
scenario. The infection source origi-
nated from a farm in Nebraska. The 
colored points denote the locations 
of infected farms. Red represents the 
earlier generations; blue represents 
the later generations. The fi rst gen-
eration is defi ned as the set of farms 
infected by the source; the second 
generation consists of the farms 
infected by the fi rst generation, 
and so on. 

Figure 2. Trace tree of a particular 
outbreak scenario. Traces (e.g., gen-
eration information) offer valuable 
information about the propagation 
of the disease outbreak.
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guide the exploration through the space 
of DAGs. 

The implemented algorithms were 
applied to simulated data sets from two 
sources: 1) energetics/diagnostics data 
from NIF; and 2) epidemiological data 
from BKC’s Multiscale Epidemiologi-
cal/Economic Simulation and Analysis 
(MESA) project. 

We present fi ndings here only for the 
MESA data. The data was derived from 
401 independent simulations (resulting in 
15667 infected farms) of a hypothetical, 
non-intentional foot-and-mouth disease 
outbreak. Figure 1 shows the extent of 
the outbreak from one simulated scenar-
io. Each simulation contains the outbreak 
history that specifi es the infection source, 
which farm(s) were infected next as time 
progressed, along with the farms’ spatial 
locations and types. For each simula-
tion, we performed tracing (Fig. 2) and 
derived generations linking the infected 
farms. In characterizing the data 
(Fig. 3), we have found that trace 
information, along with farm types and 
distances, are key attributes in detect-
ing disease propagation. Putting this 

 FY2009 Proposed Work
FY2009 focus is on nonpara-

metric modeling methods (e.g., 
structured priors, infi nite-state Hid-
den Markov Models, and hidden 
variable discovery), which will 
enable the discovery of newly 
active states and/or entities in-
volved in a process. This work will 
produce powerful tools for gen-
erating more fl exible and realistic 
models, thus enhancing complex 
system modeling, inference, and 
decision-making.
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Figure 5. Receiver-operator charac-
teristics (ROC) curves derived from 
fi ve-fold cross-validation experiments. 
The ROC curve shows the tradeoff 
between the true positive rate (i.e., 
the fraction of correctly identifi ed 
infected farms) and the false positive 
rate (i.e., the fraction of non-infected 
farms incorrectly identifi ed as infect-
ed). The ROC curves show near-opti-
mal performance with high detection 
rates and low false alarm rates. 

Figure 4. Bayesian network construct-
ed from the MESA data. Using this, 
we want to assess whether a farm is 
infected as a function of the observ-
able variables in the graph. 

Figure 3. Stacked histograms comparing two generations’ frequency counts in 
terms of distances from the infector (i.e., the infecting farm from the previous 
generation) and the source (i.e., the farm from which the outbreak originat-
ed). The constituent colors on each bar refl ect the different farm types that 
make up the generation. From an earlier to a later generation, the outbreak 
spreads to similar farm types but is gradually moving away from the source. 

together, we constructed a BN (Fig. 4) 
consisting of these and other variables. 
Our results are summarized in Fig. 5.
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